Fuzzy lattice neural network (FLNN): a hybrid model for learning
نویسندگان
چکیده
This paper proposes two hierarchical schemes for learning, one for clustering and the other for classification problems. Both schemes can be implemented on a fuzzy lattice neural network (FLNN) architecture, to be introduced herein. The corresponding two learning models draw on adaptive resonance theory (ART) and min-max neurocomputing principles but their application domain is a mathematical lattice. Therefore they can handle more general types of data in addition to N-dimensional vectors. The FLNN neural model stems from a cross-fertilization of lattice theory and fuzzy set theory. Hence a novel theoretical foundation is introduced in this paper, that is the framework of fuzzy lattices or FL-framework, based on the concepts fuzzy lattice and inclusion measure. Sufficient conditions for the existence of an inclusion measure in a mathematical lattice are shown. The performance of the two FLNN schemes, that is for clustering and for classification, compares quite well with other methods and it is demonstrated by examples on various data sets including several benchmark data sets.
منابع مشابه
Numerical solution of fuzzy differential equations under generalized differentiability by fuzzy neural network
In this paper, we interpret a fuzzy differential equation by using the strongly generalized differentiability concept. Utilizing the Generalized characterization Theorem. Then a novel hybrid method based on learning algorithm of fuzzy neural network for the solution of differential equation with fuzzy initial value is presented. Here neural network is considered as a part of large eld called ne...
متن کاملDesign of a Recurrent Functional Neural Fuzzy Network Using Modified Differential Evolution
In this paper, a recurrent functional neural fuzzy network (RFNFN) with modified differential evolution (MDE) method is proposed to solve the prediction problems. The proposed RFNFN model adopts a functional link neural network (FLNN) to the consequent part of the fuzzy rules. FLNN uses orthogonal polynomials and linearly independent functions to form a functional expansion. Thus, the consequen...
متن کاملNumerical solution of fuzzy linear Fredholm integro-differential equation by \fuzzy neural network
In this paper, a novel hybrid method based on learning algorithmof fuzzy neural network and Newton-Cotesmethods with positive coefficient for the solution of linear Fredholm integro-differential equation of the second kindwith fuzzy initial value is presented. Here neural network isconsidered as a part of large field called neural computing orsoft computing. We propose alearning algorithm from ...
متن کاملNumerical solution of hybrid fuzzy differential equations by fuzzy neural network
The hybrid fuzzy differential equations have a wide range of applications in science and engineering. We consider the problem of nding their numerical solutions by using a novel hybrid method based on fuzzy neural network. Here neural network is considered as a part of large eld called neural computing or soft computing. The proposed algorithm is illustrated by numerical examples and the result...
متن کاملNonlinear System Control Using Functional-Link-Based Neuro-Fuzzy Network Model Embedded with Modified Particle Swarm Optimizer
This study presents an evolutionary neural fuzzy system (NFS) for nonlinear system control. The proposed NFS model uses functional link neural networks (FLNNs) as the consequent part of the fuzzy rules. This study uses orthogonal polynomials and linearly independent functions in a functional expansion of the functional link neural networks. A learning algorithm, which consists of structure lear...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEEE transactions on neural networks
دوره 9 5 شماره
صفحات -
تاریخ انتشار 1998